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Abstract

In this paper, we present a novel Dynamic DETR (De-
tection with Transformers) approach by introducing dy-
namic attentions into both the encoder and decoder stages
of DETR to break its two limitations on small feature res-
olution and slow training convergence. To address the
first limitation, which is due to the quadratic computa-
tional complexity of the self-attention module in Trans-
former encoders, we propose a dynamic encoder to ap-
proximate the Transformer encoder’s attention mechanism
using a convolution-based dynamic encoder with various
attention types. Such an encoder can dynamically adjust
attentions based on multiple factors such as scale impor-
tance, spatial importance, and representation (i.e., feature
dimension) importance. To mitigate the second limitation
of learning difficulty, we introduce a dynamic decoder by
replacing the cross-attention module with a ROI-based dy-
namic attention in the Transformer decoder. Such a decoder
effectively assists Transformers to focus on region of inter-
ests from a coarse-to-fine manner and dramatically lowers
the learning difficulty, leading to a much faster convergence
with fewer training epochs. We conduct a series of experi-
ments to demonstrate our advantages. Our Dynamic DETR
significantly reduces the training epochs (by 14×), yet re-
sults in a much better performance (by 3.6 on mAP). Mean-
while, in the standard 1× setup with ResNet-50 backbone,
we archive a new state-of-the-art performance that further
proves the learning effectiveness of the proposed approach.

1. Introduction
Object detection aims at predicting a set of bounding

boxes and category labels for each object of interest. Mod-
ern object detectors are based on convolutional neural net-
works, and share the same paradigm – a backbone for fea-
ture extraction and a head for localization and classifica-
tion tasks [22, 10]. Until recently, Detection Transformer
(DETR) has been proposed as an alternative solution to the

Figure 1. Convergence curve comparison between our proposed
approach and state-of-the-art methods. Our Dynamic DETR
largely reduces the training epochs (by 14×), yet results in a sig-
nificantly better performance (by 3.6).

object detection problem. It views object detection as a
set-based matching problem. By leveraging Transformers
[25] originally developed for language tasks, it is able to
model the relations of objects and their global image con-
text from a set of learned object queries. It then performs a
global optimization that forces unique predictions from ob-
ject queries via bipartite matching, effectively removing the
need of hand-designed components such as non-maximum
suppression (NMS) and anchor generation in traditional ob-
ject detection methods.

However, DETR suffers from several problems that pre-
vent it from wide adoption in the community. On one hand,
the input resolution of features maps is limited in the native
Transformer as feature encoder, since the complexity of the
self-attention module grows quadratically with the increase
of the input resolution. It results in incompatibility to the
typical feature pyramid that is widely used in modern ob-
ject detectors, and relatively low performance at detecting
small objects. On the other hand, it requires much longer
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training epochs to converge than the existing object detec-
tors since the cross-attention module struggles to learn on a
large global feature map from an initial dense attention to
a final sparse attention. Thus, it is the high demand of an
effective solution for improving DETR.

Recent work Deformable DETR [29], which combines
the sparse spatial sampling of deformable convolution, and
the relation modeling capability of Transformers, to miti-
gate the slow convergence and high complexity issues of
DETR. It has achieved noticeable improvements on perfor-
mance and efficiency in training. It is interesting to exploit
if the efficiency and performance of DETR can be further
improved.

In this paper, we propose an alternative solution to ad-
dress the above two problems of DETR by a dynamic at-
tention framework, called Dynamic DETR, which consists
of a dynamic encoder and a dynamic decoder. We replace
the Transformer encoder in DETR with a new convolution-
based dynamic encoder, which apply dynamic attention on
full scales of feature pyramid based on scale importance,
spatial importance, and representation (i.e., feature dimen-
sion) importance. Since it makes self-attentions feasible on
full scale of representations from low to high resolutions,
the performance of DETR can be significantly boosted. In
addition, the dynamic decoder replaces the cross-attention
module in the DETR decoder with a ROI-based dynamic at-
tention, which can effectively assists Transformers to focus
on regions of interest in a coarse-to-fine manner and dra-
matically lowers the learning difficulty, leading to a much
faster convergence with fewer training epochs.

Our contribution can be summarized in three-folds:

• We propose a novel Dynamic DETR approach, which
coherently combines a dynamic convolution-based en-
coder and a dynamic Transformer-based decoder. The
proposed approach significantly improves the repre-
sentation ability of object detection head and the learn-
ing efficiency without any computational overhead.

• Compared to the original DETR, Our Dynamic DETR
largely reduces the training epochs (by 14×), yet re-
sults in a significantly better performance (by 3.6),
shown in Figure 1.

• To our best knowledge, we are the first end-to-end
method that achieves a better than traditional perfor-
mance in the standard 1x setup with a ResNet-50 back-
bone, at 42.9 mAP.

2. Background

Feature Pyramid. Recognizing objects at vastly differ-
ent scales that co-existed in natural images is a fundamen-
tal challenge in computer vision. Researches have explored

many directions to incorporate multiple scale into object de-
tection. [6] first introduced image pyramid to object de-
tection by independently computing features on different
scales and regions of the images separately. Later, [22, 21]
discarded such idea and only unitized single scale features
due to the slow speed of extracting features from multiple
scales of images. To overcome the obvious disadvantages of
image pyramid, feature pyramid [14] was proposed, which
combined both the feature hierarchy computed from a neu-
ral network and a top down architecture with lateral connec-
tions to enhance the semantics at all levels. It largely im-
proved the performance without sacrificing efficiency and
had hence become a standard component in modern object
detectors. However, features from different levels were usu-
ally extracted from different depths of the network, which
causes a semantic gap. Recent works continuously to im-
prove the feature pyramid by introducing more comprehen-
sive architectures. [17] introduced a bottom-up path aug-
mentation from the feature pyramid to enhance the fea-
tures in lower layers. Later, [19] further improved it by
introducing balanced feature pyramid, together with bal-
anced sampling and and balancing loss to mitigate the ad-
verse effects caused by the imbalance in feature level. Re-
cently, [26] proposed to extract scale and spatial features
simultaneously in the spirit of 3D convolution to aggregate
contextual information at different levels. Most recently,
[8] proposed to unify scale-awareness, spatial-awareness,
and task-awareness together by applying multiple attention
mechanisms on feature pyramid and resulted in a significant
improvement.

Dynamic Attention. Recently, researchers began to in-
corporate dynamic attention mechanisms to CNN to en-
hance its feature representation. [12] first proposed a
novel “Squeeze-and-Excitation” (SE) unit, which adap-
tively recalibrates channel-wise feature responses by ex-
plicitly modeling inter-dependencies between channels. [7]
proposed a deformable convolution to sample spatial loca-
tions with additional self-learned offsets. [28] reformulated
the offset by introducing a learned feature amplitude and
further improved its ability. [3] proposed to aggregate mul-
tiple parallel convolution kernels dynamically based upon
their attentions, which had more representation power since
these kernels are aggregated in a nonlinear way via atten-
tion. [4] introduced a dynamic ReLU of which parameters
were generated by a hyper function over input elements.
It encodes the global context into the hyper function and
adapts the piecewise linear activation function accordingly
based on the input. Most recently, there is a trend to adapt
Transformer [25] from natural language processing into vi-
sion tasks. Its multi-head self-attention and cross-attention
mechanisms provide a powerful way to model long-range
and cross-modal dependencies, which are highly desired

2989



properties in a wide range of computer vision tasks, such
as image classification, object detection, and so on.

End-to-End Object Detection. The basic formulation of
object detection has been settled into either one-stage or
two-stage methods, which have not been changed for a
while. [6, 22] formalized the modern two-stage object
detection by first introducing Region Proposal Networks
(RPN) to extract region features and then applying a sec-
ond stage to refine the prediction. Meanwhile, [21, 15] in-
troduced the one-stage object detector by directly regressing
bounding boxes and predicting class probabilities from con-
volutional features of full image in a single neural network,
which results in high efficiency. Furthermore, [1] intro-
duced cascade procedure to form a multiple-stage detector.
[23] later improved the performance by learning a sparse set
of object proposals instead of dense anchor priors.

Alternatively, Detection Transformer (DETR) [2] was
proposed to provide an alternative solution to object detec-
tion. It presents an end-to-end optimization objective for set
prediction and formulates the loss function via a bipartite
matching mechanism between object proposals and ground-
truth labels. It adapts an Transformer encoder-decoder head
built upon the CNN backbone. Such an approach effec-
tively removes the need of hand-designed components such
as non-maximum suppression (NMS) and anchor genera-
tion in traditional object detection methods. However, it
did not solve a few problems when adapting from lan-
guage tasks to vision tasks such as limited input feature
resolutions and much longer training epochs. Most re-
cently, Deformable DETR[29] was proposed to solve such
problems by introducing deformbale convolutions into the
Transformer framework and achieved significant improve-
ments.

This work presents an alternative solution to address
the existing problems of DETR and further boost the per-
formance and training efficiency achieved by Deformable
DETR to a new high level. By contrast, our key contribution
consists of a convolution-based dynamic encoder and an im-
proved Transformer-based dynamic decoder. Our approach
is able to apply dynamic attention on full scales of feature
pyramid varying from low to high resolutions and assist
Transformers to focus on regions of interest in a coarse-to-
fine manner to enable faster convergence.

3. Dynamic DETR

In this section, we study the existing problems in DETR
at first. Then we introduce dynamic encoder and dynamic
decoder in our Dynamic DETR respectively to address these
problems.

3.1. Revisiting DETR

The most crucial attention module in Detection Trans-
former (DETR) is the multi-head attention layer directly
from Transformer [25] used in language processing. Given
a query Q, a key K and a value V , the multi-head attention
layer models attentions from different representation sub-
spaces and positions in parallel using multiple headsH:

MultiHeadAttn(Q,K, V ) = Concat(Hi, . . . ,Hm)WO

Hi = softmax
(

QWQ
i (KWK

i )T√
dk

VWV
i

)
(1)

where dk is the dimension of the key, m is the number of
heads, WQ

i , WK
i , WV

i are linear projections andWO is the
projection matrix to fuse features from different heads to-
gether. Such an attention layer formulates the self-attention
and cross-attention mechanisms by varying the combination
of key and value.

When applied to object detection task, a few compro-
mises have been made to adapt the spatial information.
In the Transformer encoder stage, only the self-attention
mechanism is preset. The query and key are flattened
pixels from feature maps, which makes the complexity
to be quadratic with respect to the input spatial scales.
This largely limits the resolution of input feature maps
and makes extracting features from pyramid representation
infeasible. In the Transformer decoder stage, the multi-
head attention layer has been formulated in both the self-
attention and cross-attention mechanisms. The burden of
self-attention has been released as the key and query are
from learn-able object embeddings. However, in the cross-
attention mechanism, the key is still fed from feature maps,
which causes the learning difficulty of attending a query to
a sparse locally-focused region from an initial uniform at-
tention on the whole feature maps.

To overcome these above problems, we propose to apply
dynamic attentions in both the encoder stage to take advan-
tages of feature pyramid representations and the decoder
stage to accelerate the training convergence, as shown in
Figure 2.

3.2. Dynamic Encoder

In contrast to directly improving Transformer encoders,
we seek to use a convolution-based approach to approxi-
mate the self-attention mechanisms. Given a set of features
P = {P1, . . . , Pk} (k = 5 for typical object detectors) from
a feature pyramid, ideally, we would like to have a multi-
scale self-attention function π:

MultiScaleSelfAttn(P ) = π(P ) · P (2)

Unfortunately, this is infeasible due to the varied scales
of feature maps from the feature pyramid. Inspired by the
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Figure 2. The architecture overview of the proposed approach. Our Dynamic DETR coherently combines a dynamic convolution-based
encoder and a dynamic Transformer-based decoder.

3D convolution and Pyramid Convolution [26], we can re-
lax the cross-scale modeling into a few scale-equalizing 2D
convolution within neighbours:

PyramidConv(Pi) = Sum(P ∗i )

P ∗i = {Upsample (Conv(Pi−1)) ,Conv(Pi),
Downsample (Conv(Pi+1))}

(3)

However, a naive convolution operation is not able to ap-
proximate self-attention in spatial domain due to its small
kernel size. Here, we further apply Deformable Convo-
lution [7, 28] to attend kernel learning on sparsely spatial
locations, which practically formulates a spatial attention.
Note that simply replacing each 2D convolution with 2D
deformable convolution may fail to model the spatial atten-
tion correctly, as each scale may attend to a different spatial
location, leading to conflicts when aggregating features by
summation. Thus, we propose to only attend to spatial loca-
tions learned from an un-resized central layer and propagate
to its resized neighbours:

P+
i = {Upsample (DeformConv(Pi−1, si)) ,

DeformConv(Pi, si),
Downsample (DeformConv(Pi+1, si))}

si = Offset(Pi)
(4)

Furthermore, we apply SE [12] on scales to formulate a
scale attention to fuse the features:

wPi = SE(P+
i ) (5)

Afterwards, we also apply Dynamic Relu [4] to formulate a
representation (i.e., channel or feature dimension) attention:

DyReLU(xc) = max(a1cxc + b1c , a
2
cxc + b2c)

a1c , b
1
c , a

2
c , b

2
c = Delta(xc)

(6)

Finally, the multi-scale self-attention in our dynamic en-
coder is formulated as:

MultiScaleSelfAttn(P ) = Concat
i=1...k

(
DyReLU(wPiP+

i )
)

(7)
Interestingly, our dynamic encoder can be viewed as

a sequentially decomposed approximation of full self-
attention, similar to [8]. Our approach dynamically adjusts
attention based on multiple factors such as scale impor-
tance, spatial importance, and representation importance.
By stacking multiple modules consecutively together, our
dynamic encoder can largely improve the sparseness of fea-
ture representation, leading to better detection performance.
Compared with Deformable DETR [29], which also applies
deformable convolution to extract features, our implemen-
tation better approximates the attention learning on extra
scale and channel dimensions.

3.3. Dynamic Decoder

To lower the learning difficulty in the cross-attention
mechanism in Transformer, we propose to utilize mixed
attention blocks instead of the traditional multi-head lay-
ers. Inspired by recent progress of ConvBERT [13] in lan-
guage processing, we use dynamic convolution to replace
the cross-attention layer. To further adapt this idea to object
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detection, we first introduce a widely used RoI Pooling [22]
layer into the Transformer decoder, as shown in Figure 2.
More specifically, we first replace the position embedding
with a box encoding B ∈ Rq×4 which was initialized as the
size of the full image at the beginning. Given the feature
output Penc from our dynamic encoder and the box encod-
ingB, we can pool region features F ∈ Rq×r×r×d from the
feature pyramid:

F = RoIPool(Penc, B, r) (8)

where r is the pooling size, d is the number of channels of
Penc. To accomplish this in the cross-attention mechanism,
we require a query embeddingQ ∈ Rq×d for object queries.
It first goes through the multi-head self-attention layer:

Q∗ = MultiHeadSelfAttn(Q,Q,Q) (9)

Then we generate dynamic filters based on Q using a fully-
connected layer:

WQ = FC(Q∗) (10)

Finally, we can perform cross-attention between queries and
region features by applying a 1 × 1 convolution using dy-
namic filters WQ:

QF = Conv1×1
(
F,WQ

)
(11)

The attended featureQF can be further fed into FFN lay-
ers to generate different predictions such as new object em-
bedding Q̂, new box encoding B̂ and object class Ĉ:

Q̂ = FFN
(
QF

)
(12)

B̂ = ReLU
(
LN

(
FC(Q̂)

))
(13)

Ĉ = Softmax
(
FC(Q̂)

)
(14)

By stacking our dynamic decoders sequentially, we im-
plicitly attain a coarse-to-fine refining box encoding from a
full image at the early layer to a specific object at the final
layer. Such a process greatly reduces the learning difficulty
of cross-attention by regulating the model to focus on sparse
regions first and then expand to global progressively. Since
box encoder also has learnable parameters, it will behave
as an anchor generator after training convergence. Our Dy-
namic Decoder can significantly reduce the training epochs
needed.

4. Experiments
4.1. Setup

Dataset. We validate our proposed Dynamic DETR on
the challenging MS COCO object detection benchmarks
[16] following the widely used common practice. MS
COCO dataset contains about 160K images collected from

web images on 80 common categorise. The dataset is
further split into three subsets: train2017 (118K images),
val2017 (5K images) and test2017 (41K images). In all our
experiments, we only train on train2017 images without us-
ing any extra data. For experiments of ablation studies, we
evaluate the performances on val2017 subset. When com-
paring to state-the-of-art methods, we report the official re-
sults returned from the test server on test-dev set. We report
the standard mean average precision (mAP) under different
IoU thresholds and object scales.

Implementation Detail. We use standard ImageNet [9]
pre-trained ResNet and ResNeXt as backbones with FPN
[14] to extract feature maps from 5 different scales (from
1/4 to 1/64 of input size). The batch norm statics is frozen in
backbone similar to [11]. We then feed these feature maps
into our dynamic encoder and decoder. We use pool size 7
in ROI Pooling layer. We set the number of pooled box to be
same as the number of bounding box encoding and number
of query. The hidden dimension of query embedding is 256.
We implement our Dynamic DETR in PyTorch.

Training and Inference. We train our models using both
standard 1× (12 epochs) schedule without multi-scale train-
ing for all ablation studies and prolong 3× (36 epochs)
schedule with multi-scale training for comparison with
state-of-the-art to demonstrate our advantages. We use
AdamW optimizer [18] in both setups and choose a initial
learning rate at 1e−4 and weight decay at 1e−4. We step
down the learning by a rate of 0.1 twice at 67% and 89%
of epochs. All the experiments are trained on a node with 8
V100 GPUs. No other augmentation (such as random crop,
mosaic, etc) or optimization tricks (such as EMA, weight
normalization) were used during training. During inference,
we do not use multi-scale testing neither.

4.2. Ablation Study

We conduct a series of ablation studies to demonstrate
the effectiveness of our proposed Dynamic DETR using
standard 1× (12 epochs) setup.

Method AP AP50 AP75

DETR 15.5 29.4 14.5
+ Dynamic Encoder 24.1 40.9 24.8

Deformable DETR 37.2 55.5 40.5
+ Dynamic Encoder 34.3 52.3 37.4

Dynamic Decoder 40.2 58.6 43.4
+ Dynamic Encoder 42.9 61.1 46.2

Table 1. Ablation study on the effectiveness of each components in
our Dynamic DETR on MS COCO validation set using 1x setup.
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# AP AP50 AP75

Ablation on #Encoder:

2 41.2 59.4 44.3
4 42.4 60.6 45.7
6 42.9 61.0 46.1

Ablation on #Decoder:

2 29.2 43.1 31.3
4 40.3 57.2 43.4
6 42.9 61.0 46.1

Ablation on #Head in Decoder:

2 42.5 60.6 45.7
4 42.9 61.1 46.2
8 42.9 61.0 46.1

Ablation on #Dimension in Decoder:

512 38.1 55.4 41.0
1024 40.5 57.1 43.2
2048 42.9 61.1 46.2

Ablation on #Query:

100 41.1 60.0 44.5
300 42.9 61.0 46.1

Table 2. Ablation study on the effectiveness of module stacking in
our Dynamic DETR on MS COCO validation set using 1x setup.

Effectiveness of the Components. We start with analyz-
ing the effectiveness of our dynamic encoder and dynamic
decoder by swapping components with DETR [2] and De-
formable DETR [29]. Shown in Table 1, we first add our
dynamic encoder in DETR. It is clear to see that by intro-
ducing our dynamic encoder, we largely improve the DETR
performance on both small and large objects by 8.6%.

Then we apply our dynamic encoder to replace the en-
coder within Deformable DETR, we do observe a perfor-
mance drop by 2.9%. Further investigation reveals that the
decoder of Deformable DETR solve the slow convergence
problem by introducing an initial attention ”anchor points”
to cross-attention layer and loss. It doesn’t take the full ad-
vantage of feature fusion in feature pyramid and is incom-
patible with our dynamic encoder design. This motivates us
to design our dynamic decoder.

Finally, we demonstrate the performance of our own ap-
proach. By using only our dynamic decoder, we have al-
ready surpassed others by a large margin while only slightly
increase the parameters. When final combine our dynamic
encoder and dynamic decoder together, we are able to
achieve a state-of-the-art performance. We significantly
outperform Deformable DETR by 5.7%.

Analysis on Number of Modules. We continue to inves-
tigate the influence by varying different number of modules

in our approach, shown in Table 2. We first evaluate the per-
formance influence of using different number of dynamic
encoders. It is obvious to see that only using two stacks
of our dynamic encoders can already achieve good perfor-
mance at. Stacking more modules can further improve the
performance. This proves the effectiveness of our dynamic
encoder.

We then evaluate the performance influence of using dif-
ferent number of dynamic decoders. It is clear to see that
use less stacks of our dynamic decoder will significantly
hurt the performance. This phenomena is expected as we
require an enough number of decoders to effectively for-
mulate a coarse-to-fine learning scheme for cross-attention.
This demonstrates the importance of our dynamic decoder.

We further investigate the effects of number of self-
attention heads in dynamic decoder. It is interesting to ob-
serve that we only require 4 heads, which reduces the num-
ber by half compared to others. This further demonstrates
the effectiveness of our dynamic decoder.

Finally, we investigate the importance of number of
queries. We observe a similar phenomena as Deformable
DETR that increasing number of queries will continuously
increase the final performance. To conduct fair comparison
with Deformable DETR, we also use 300 object queries in
further experiments.

4.3. Comparison to State-of-the-Art

We compare the performance of our Dynamic DETR
with both of state-of-the-art traditional object detectors and
concurrent End to end object detectors.

Comparison to Traditional Object Detectors. Since
end to end object detectors are often criticized by the un-
fair training time, we first compare our Dynamic DETR
with traditional methods, such as [22, 11, 15, 24, 27, 5, 20]
using a standard 1x schedule without multi-scale training.
Shown in Table 3, our proposed Dynamic DETR achieves
a new state-of-the-art performance at 42.9 mAP, which out-
performs previous best [20] by 1.5 mAP without any bells
and whistles in training. We also shows the performance of
DETR and Deformable DETR using 1x training schedule
and dose find both methods yield underrated performance
due to short training epochs. The experiments well demon-
strates that our Dynamic DETR achieve a superior learning
efficiency and performance.

Convergence Analysis. We further conduct a conver-
gence analysis by prolonging the training to 50 epochs and
stepping down the learning rate by a factor 0.1 at multi-
ple training epochs. Shown in Figure 3, we compare our
convergence curve with Deformable DETR. It is clear to
see that our approach reaching a convergence at around
40 epochs. Interestingly, Deformable DETR doesn’t reach
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Method Backbone Iteration AP AP50 AP75 APS APM APL

Faster R-CNN[22] ResNet-50 1x 37.9 58.8 41.1 22.4 41.1 49.1
Mask R-CNN[11] ResNet-50 1x 38.6 59.5 42.1 22.5 42.0 49.9

RetinaNet[15] ResNet-50 1x 37.4 56.7 40.3 23.1 41.6 48.3
FCOS[24] ResNet-50 1x 38.6 57.2 41.7 23.5 42.8 48.9
ATSS[27] ResNet-50 1x 39.3 57.5 42.8 24.3 43.3 51.3

RepPoints v2[5] ResNet-50 1x 41.0 59.9 43.9 23.8 44.8 54.0
BorderDet[20] ResNet-50 1x 41.4 59.4 44.5 23.6 45.1 54.6

DETR*[20] ResNet-50 1x 15.5 29.4 14.5 4.3 15.1 26.7
Deformable DETR*[20] ResNet-50 1x 37.2 55.5 40.5 21.1 40.7 50.5

Dynamic DETR ResNet-50 1x 42.9 61.0 46.3 24.6 44.9 54.4
Table 3. Compared to SOTA under standard 1× setup using the same backbone on MS COCO validation set. * indicates using multi-scale
training.

Figure 3. Convergence curves of our Dynamic DETR and Deformable DETR on MS COCO validation set.

convergence at reported 50 epochs, but at a much longer
150 epochs. We can conclude that our Dynamic DETR re-
duces the training epochs to converge by 4× compared to
Deformable DETR, while yield a better performance (47.2
mAP vs 45.3 mAP).

Comparison to SOTA Object Detectors. Finally, we
compare to all state-of-the-art object detectors [1, 5, 27,
20, 23, 2, 29] at full convergence on COCO test-dev set.
Shown in Table 4, we achieve new state-of-the perfor-
mances at 47.2 mAP using ResNet-50 backbone and 49.3
using ResNeXt-101-DCN backbone compared to both tra-
ditional object detectors and end to end object detectors.
The two-stage modification of Deformable DETR (largely
improves its performance) can further boost our perfor-
mance. But we don’t include for the cleanliness of presen-
tation.

4.4. Visualization

As mentioned in above section, our dynamic decoder re-
fine the box encoding in a coarse to fine matter to assist
the learning of cross-attention layer. To demonstrate that,

we visualize the output of updated box encoding after dif-
ferent stage of dynamic decoder layer, shown in Figure 4.
We draw the predicted boxes in different colors for better
differentiation, not for representing the categories. For the
first three rows, we pick images containing objects with sig-
nificant variants of scale. It is clear to see that, at early stage
of decoder, the predicted box cover a large portion of poten-
tial region. As the decoder goes deeper, the predicted box
becomes more sparse, focusing on dedicated objects. This
proves the intention of our design. For the last row, we pick
a ”easier” image with different scale of elephants to demon-
strate the learning dynamics. At first stage of the decoder, it
first learns to attend to the largest elephant with high confi-
dence score. Then as the stage of the decoder goes deeper,
it shifts its attention to refine smaller elephants. Again, this
example further proves that our dynamic decoder can assist
the learning of cross-attention layer refining the box encod-
ing in a coarse to fine matter.

5. Conclusion
In this paper, we address two existing problems of DETR

(Detection with Transformers): small feature resolution and
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Method Backbone AP AP50 AP75 APS APM APL

Cascade-RCNN [1] ResNet-50 40.6 59.9 44.0 22.6 42.7 52.1
RepPoints v2 [5] ResNet-50 44.4 63.5 47.7 26.6 47.0 54.6
RepPoints v2 [5] ResNeXt-101-DCN 49.4 68.9 53.4 30.3 52.1 62.3

ATSS [27] ResNeXt-101-DCN 47.7 66.5 51.9 29.7 50.8 59.4
BorderDet [20] ResNeXt-101-DCN 48.0 67.1 52.1 29.4 50.7 60.5

Sparse R-CNN [23] ResNeXt-101-DCN 48.9 68.3 53.4 29.9 50.9 62.4

DETR[2] ResNet-50 43.3 63.1 45.9 22.5 47.3 61.1
Deformable DETR [29] ResNet-50 43.8 62.6 47.7 26.4 47.1 58.0

Deformable DETR (two-stage) [29] ResNet-50 46.9 66.4 50.8 27.7 49.7 59.9
Deformable DETR (two-stage) [29] ResNeXt-101-DCN 50.1 69.7 54.6 30.6 52.8 64.7

Dynamic DETR ResNet-50 47.2 65.9 51.1 28.6 49.3 59.1
Dynamic DETR ResNeXt-101-DCN 49.3 68.4 53.6 30.3 51.6 62.5

Table 4. Compared to SOTA results using different backbones on MS COCO test-dev set

Figure 4. Visualization of box encoding output after different decoder layers. The bounding box is refined in a coarse to fine matter. Best
viewed in color and high resolution. The color of box is for better visualization, not stands for classes.

slow training convergence by a novel Dynamic DETR ap-
proach. It introduces dynamic attentions into both the en-
coder and decoder stages. In the encoder stage, we propose
to use a convolution-based dynamic encoder with various
attention types to approximate the Transformer encoder’s
attention mechanism. In the decoder stage, we replace the

cross-attention module with a ROI-based dynamic atten-
tion. Such an approach largely increases the feature reso-
lution and reduces the training epochs needed for conver-
gence. This framework helps end-to-end object detection
based on transformers first achieves the best performance
with ResNet-50 backbone under 1X training setup.
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